hello大家好,今天小编来为大家解答以下的问题,数学二考研复习 数学二考研复习攻略,很多人还不知道,现在让我们一起来看看吧!

数学二是考研数学中的重要科目之一,对于考研生来说,合理高效的复习攻略是成功的关键。下面将为大家介绍一些数学二考研复习的攻略。

数学二考研复习 数学二考研复习攻略

明确考试内容。数学二包括高等数学、线性代数、概率论与数理统计三个部分,而这三个部分的重点难点各不相同。在复习过程中,要根据自己的情况安排时间,重点针对薄弱环节进行深入学习。

制定合理的学习计划。复习计划要有目标性、可操作性和科学性。可以根据自己的时间安排制定每日、每周的学习计划,将整个复习过程分解成小的阶段性目标,逐步完成。

第三,注重基础知识的巩固。数学二考研的题目大多以基础知识为基础,所以要抓住重点,从基础入手,通过做大量的基础题来加深对知识的理解与记忆,并及时总结归纳,加深对知识点的理解。

第四,多做真题。做真题是考研复习的关键环节,通过做真题可以熟悉考试的出题规律和难度。可以按照不同的章节和知识点进行分类整理,逐一攻破,做到心中有数、游刃有余。

保持良好的心态和健康的生活方式。考研复习是一个漫长而辛苦的过程,要保持积极向上的心态,相信自己的能力。要注意调节好作息时间、饮食结构和精神状态,保持身心健康。

数学二考研复习攻略包括明确考试内容、制定合理的学习计划、注重基础知识的巩固、多做真题和保持良好的心态和健康的生活方式。只有合理安排时间、科学复习,才能在考试中取得好成绩。希望大家都能顺利通过数学二考研,实现自己的考研梦想。

数学二考研复习 数学二考研复习攻略

前言:我在2021年已经上岸,数学二130分,给大家分享一下准备数学二复习经验,希望能帮助到大家。数学二考察高等数学和线性代数,是大多数理工科同学都会考察的科目,分值也比较重,150分是满分,占比很重,所以都说得数学者得天下。下面就分享一下数学复习过程中的书籍,进度,题型等技巧。

——数学二复习资料规划

资料:

我只看张宇视频课,除此之外我还做了汤家凤1800,李林880,李永乐线代课。我数学用的所有资料和视频课基本都是跟的张宇老师,张宇老师的课很好,推荐!!!因为张宇老师讲课比较幽默,我学数学又容易犯困,这才能引起我的兴趣。章鱼老师

——数学二高数和线代复习技巧

高等数学:

高等数学复习开始时候,可以先用同济版的书自己看一遍。网课是必须跟的,因为自己很难悟出来。高数的部分一般分为基础强化,其中基础阶段打好,强化才能更快。21年考研高等数学题注重基础,并且计算量很大,因此平时复习准备时要注重这方面的练习。因为考场上,其实有时候不是不会做,只是做得慢!线性代数:线代在数二中考察的分值比较少,所以复习的时候可以用时短一点,线代的解题规律都是比较固定的,所以完全可以用题海战术应对!

——数学二月度复习规划技巧

4月—6月一轮复习:数学二内容很多,初期每天在数学上花费的时间不少于3小时。一轮复习用书是张宇30讲,基本上是每天看2节视频,并且做相关例题。学完一整章后要会做课后习题,完成基础300题并且完成汤家凤的1800题基础部分。7月—8月强化复习:暑假要开始数学强化阶段,建议强化阶段每天上午8点到12点学习数学,晚上10点对当天的数学错题进行总结。

9月—10月刷题阶段:把之前买的题注重求导,积分,三重积分,线代求解部分。真题大全解可以刷了一遍,对真题的出题方向有了一个清晰的认识。11月开始做模拟题:上午规定时间,并且用答题卡做。11月份刚开始可以1天一套,11月下旬可以2天一套。

12月需要回归基础讲义+真题选择题二刷+复习错题集。强调一点,做数学题心态很重要,并且注重计算!——结语数二的备考,需要持之以恒,要做好个人规划,只有努力才会有收获,加油,希望你们都能取得更高的数学成绩!

考研复习全书数学二

数二资料:二李全书(必选),汤的高数讲义和张宇的18讲(二者选一都行);李永乐的线代辅导讲义(有这本书的话,可以把二李全书后面的线代部分撕掉,不看);真题(选用二李的);习题集:660(必选),其余的比如汤的1800和张宇的1000,反正是有时间,就去做做,做自己的薄弱项。时间安排

数二的时间安排:如果你开始的比较早,希望在暑假之前,能把高数的讲义已经过了一遍了,或者课本也过完了。课本的习题一定要做做,还是很有难度的。暑假完了,希望已经完完全全过完了全书,一般8月份都过的差不多了。之后就是第二遍和第三遍,这就要看自己的一个复习进度和状况来分析,怎么安排时间了。

3月——5、6月:刚开始复习的时候不用看高数同济书,因为书上的内容比较难理解,要理解到位真的需要很好的理解性和跳跃性思维。

可以看视频:

老汤对应视频(做笔记)——张宇对应视频(做笔记)——老汤1800——张宇1000;这样一个章节就算结束了,笔记很重要,就跟着老师视频中讲的内容开始记。

这样下去你的基础会打的特别牢固的。老汤的东西适合打基础,张宇的东西适合提高。所以每一章节看视频的时候必须先看老汤,再看张宇。这样的顺序才正确。

不管是数学一还是数学二或三,这个方法都是通用的。

6、7月——8、9月:不要着急开始看全书,这个时间段,如果你复习的快的话可能我上面讲的你都看完了。如果感觉不是很稳的话,可以再浏览讲义和做题的,记着全程做题的时候别再书上做,自己拿另外的本子做最好,这样你可以以后再过第二遍甚至第三遍。

如果高数你复习完了的话,现在就得开始复习线代和概率论了。线性代数这门课还是依照上面的方法,看视频,做辅导讲义和对应题。完全会让你的线代达到拿满分的程度。概率论的话因为是数二没有复习到,所以没有太好的建议。到了这个时候你复习肯定有了自己的思路和规划。完全可以按照自己的水平和思路来。

9月——10月:这个时候就得开全书了。全书建议新学期开始了就开始看,新学期以前就认认真真把我上面所说的内容搞完,基础打好。

全书分两种,一种是李永乐王式安红皮的,也是最通用的。一种是李正元粉色版本的。两种都要买,都要看,如果你时间不是很足的话,可以直接上第二种,第一种买着浏览浏览。

红色版本,红色全书是全面复习的,这时候你数学有基础了,就慢慢自己根绝进度过一遍,认真做题改错,过完第一遍以后做660题,这是蛮经典的题,只有选择填空。粉色版本的题是跟全书在一块的,这个是过完一章节,就做题,过完做。扎扎实实把这本书过完,时间也就差不多了。

全书过完后就可以开真题了。30年的真题,前15年比较简单,一天做2套,规定时间做,尽早进入考试模式,不要不会就去查答案,看了答案有了思路感觉自己这道题就懂了,其实并没有。下次遇到这种题你还是不会。做完一套题对答案纠错,不断重复。

后15年的就差不多难度加大了。这时候不要急,每天还是规定2个半小时左右做完,要比考试时间少,这样才可以练出来。还是一样认真扎实的做题纠错改正,改正的时候遇到知识点忘记的时候翻笔记,翻全书查阅。

11月——12月:这个时候真题也差不多做完了,就得做模拟题了。做的套路跟真题是一样的,不过这个你就会感觉到难度。这个时候马上考试了,后期可以温故而知新了。不用再学习新的内容,把之前学习的掌握好,稳住就行。

资料拓展:第一阶段:五月中旬。

教育部考试中心会召开2018年硕士研究生入学考试第一次工作会议暨大纲修订预备会议。总结分析上一年阅卷情况,讨论2018年硕士研究生入学考试大纲修订方案。

该阶段考生注意事项:密切关注2017年研究生入学考试分数线信息、复试和调剂信息。尤其是你比较感兴趣的学校或专业的分数线及录取信息。一般而言,学校近三年的分数线和录取信息都是非常有参考价值的,从中你可以总结出录取规律。

提醒:注意一项行动。每年的2-5月,是大多数高校集中进行复试的日子,如果有条件比较便利,那么建议同学们去自己感兴趣的院校专业复试现场感受氛围。在复试现场,你不仅可以认识未来的师哥师姐,还可以获取到很多宝贵的一手资料。

复试现场的大楼一般是开放的,你可以“混入”静静守候,等看到某个师哥或师姐从面试教室出来之时,随机迎上前去,寒暄寒暄,说说“好听”的话,顺便问一些你想要知道的信息。只要态度足够诚恳,师哥师姐一般不会拒绝。如果好运,师哥师姐觉得和你还比较投缘,他们还会答应给你留下联系方式,那么你就算找到专业课一年复习的引路人了。

实施这项活动是有前提的:活动的成本不宜太高。比方说,你要考的学校和自己同在一个城市,不需要千里迢迢奔赴另外一个城市。在2-5月份之前,你心中已经有一个报考院校专业比较清晰的认知和偏向,不要什么都不知道,很盲目地去参加一场又一场的复试见证!

第二阶段:6月中旬。

教育部考试中心召开2018年硕士研究生入学考试第二次工作会议暨大纲修订正式会议。邀请政治、英语、数学以及各统考专业课学科专家正式讨论2017硕士研究生入学考试大纲修订方案,并开展大纲具体修订工作。

提醒:对于考试大纲没有出来的这个阶段,已经决定考研的同学,特别是对于“三跨”(跨专业、跨学校、跨地区)的考生千万不可以“放轻松”,有必要提前打基础。考研的备考过程大概可以分为基础、提高、强化和冲刺阶四个阶段。在考试大纲没有出来之间,正是重要的“基础阶段”。在这个阶段,政治的复习可以先不用开始,等到政治大纲下发以后完全来得及。英语和数学则要开始全面的打底复习,弥补自己之前基础的不足。

第三阶段:7月下旬-8月中旬。

教育部定制2018年全国研究生招生计划。全国各研招机构根据教育部2017招生的要求和本机构上一年度的招生计划完成情况,上报2018年度研究生招生计划(含保送生名额)。教育部汇总各研招机构计划,制定全国2018年硕士研究生招生计划。

提醒:这个阶段正好是大家放暑假的时候。每年都有很多同学为了备考而选择留在学校参加辅导班学习,也有不少同学依然如故回家过暑假。不管怎么说,要暑假的两个月对考研很重要,这是极少有的一段完整的没有学校上课干扰的自己复试的时间,它决定着在9-10这个强化阶段自身的学习水平和能力是否有所提升。

建议大家除非有足够的自我学习控制力,否则就留校,跟着辅导班学习,和周围研友一起有规律地安排自习。暑假的两个月,要把辅导班学到的知识进行消化,并对基础阶段学到的知识进行一轮总结。

第四阶段:8月下旬-9月初。

全国招生简章正式公布,各研招机构根据2018年全国硕士研究生入学考试招生简章要求公布本机构2018年硕士研究生招生简章及招生专业目录。

该阶段考生注意事项:关注全国研究生招生最新政策变化,目标院校目标专业研究生招生计划、考试科目、指定参考教材有否发生变化。一般情况下,专业课参考教材每年变化不大,如有变化可能会增加或替代一本或两本参考书。如有发生变化,要第一时间把增加的专业参考教材准备到手,认真系统进行复习。

提醒:在备考阶段切记不要每天只是一味的学习。“两耳不闻窗外事,一心只读圣贤书”确实很投入,很用功,但这不是一种科学、灵活的用功方式。考研备考很需要各个阶段、各个环节信息的同享和沟通。时刻要保证自己没有偏离正确的大方向,自己的阶段指导方针是正确的符合时势的。

当你所报考的院校新的招考信息还没有正式出来,你所利用和参考的都是之前的信息,虽然每年新的招生简章绝大部分内容都会传承之前的信息,但还是会有小范围的改动。千万不要因小失大,花一点时间去了解最新的信息,然后再投入到精确的复习中去。

我们可以想象一下,突然间多出来一本书,不是一篇文章,在这么短的时间内真是不知该如何是好。最关键的是会对正常的复习心态带来巨大的摧毁作用。

第五阶段:9月中上旬

2018年硕士研究生入学考试考试大纲正式发行。政治、英语、数学及部分统考专业课考试大纲及大纲解析陆续出版发行。注意:这只是一般参考时间,具体每年会有一些变动。

该阶段考生注意事项:及时购买考试大纲及大纲解析,并针对大纲及时调整自己的复习计划。大纲和大纲解析被誉为考研“红宝书”,任何考研复习和参考资料都要以此为风向标。要仔细研读大纲内容,明确明年考试内容。特别要注意大纲新增和变化的考点。我们知道,大纲新增的考点和变化的考点很有可能就是今年出题的考点。

提醒:每年都有同学因为不重视考试大纲而吃亏,有些同学认为只要学好自己手头的公共课和专业课书籍就可以了。其实则不然,考试大纲及大纲解析是对考研整体范围的一个划定和考试内容的解释说明,吃透考试大纲,就可以省很多力,对于大纲不要求的范围,同学可以相对的放松。考研备考是个寸时寸金的过程,大家一定要做到重点把握,提高效率。参考链接:中国教育在线

数学二考研复习书

考研数学二常用的教材包括《数学分析教程》、《复变函数与积分变换》、《常微分方程教程》等。还可以参考辅导书籍如《考研数学二辅导书》、《数学二历年真题解析》等。根据自己的学习情况和需求选择适合的教材和参考书籍,并结合真题进行练习和复习。

为大家整理了一份考研学习资料,包括公共课,数学,英语以及各大专业课的学习资源,后面会不断汇聚更多优秀学习资源,供大家交流分享学习,需要的可以先收藏转存,有时间慢慢看~

考研资料包实时更新

通过百度网盘分享的文件:2024考研数学...

链接:https://pan.baidu.com/s/1GsTGWe1p8n6LIkKAcXVTmw

?pwd=1234

提取码:1234

数学二考研复习攻略

2011考研数学大纲内容 数二一、函数、极限、连续

考试内容

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

考试要求

1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.

6.掌握极限的性质及四则运算法则.

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学

考试内容

导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(LHospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径

考试要求

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.

6.掌握用洛必达法则求未定式极限的方法.

7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

三、一元函数积分学

考试内容

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用

考试要求

1.理解原函数的概念,理解不定积分和定积分的概念.

2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.

3.会求有理函数、三角函数有理式和简单无理函数的积分.

4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.

5.了解反常积分的概念,会计算反常积分.

6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.

四、多元函数微积分学

考试内容

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算

考试要求

1.了解多元函数的概念,了解二元函数的几何意义.

2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).

五、常微分方程

考试内容

常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用

考试要求

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.

3.会用降阶法解下列形式的微分方程: 和 .

4.理解二阶线性微分方程解的性质及解的结构定理.

5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.

6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.

7.会用微分方程解决一些简单的应用问题.

线性代数

一、行列式

考试内容

行列式的概念和基本性质 行列式按行(列)展开定理

考试要求

1.了解行列式的概念,掌握行列式的性质.

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵

考试内容

矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

5.了解分块矩阵及其运算.

三、向量

考试内容

向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法

考试要求

1.理解 维向量、向量的线性组合与线性表示的概念.

2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.

3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.

4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.

5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

四、线性方程组

考试内容

线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解

考试要求

1.会用克莱姆法则.

2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.

3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.

4.理解非齐次线性方程组的解的结构及通解的概念.

5.会用初等行变换求解线性方程组.

五、矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵

考试要求

1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.

2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.

3.理解实对称矩阵的特征值和特征向量的性质.

六、二次型

考试内容

二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性

考试要求

1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.

2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.

3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

考研复习数学二

考研数学二主要包括数学分析、复变函数、常微分方程等数学分析方向的内容。其中数学分析涉及实数理论、函数极限、连续性、导数、积分等基本概念和方法;复变函数涉及复数的基本概念、解析函数、积分、级数等内容;常微分方程涉及一阶和高阶常微分方程的解法和基本理论。考生需要掌握这些知识点,并能够灵活运用于解决数学分析相关的问题。

为大家整理了一份考研学习资料,包括公共课,数学,英语以及各大专业课的学习资源,后面会不断汇聚更多优秀学习资源,供大家交流分享学习,需要的可以先收藏转存,有时间慢慢看~

考研资料包实时更新

通过百度网盘分享的文件:2024考研数学...

链接:https://pan.baidu.com/s/1GsTGWe1p8n6LIkKAcXVTmw

?pwd=1234

提取码:1234

关于“数学二考研复习 数学二考研复习攻略”的具体内容,今天就为大家讲解到这里,希望对大家有所帮助。